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The theory of fermion particle densities in a confining linear scalar potential energy VðxÞ ¼ gjxj
is considered in both non-relativistic and relativistic quantum mechanics. In the former case,
some analytic progress proves possible for weak potentials (small g), by consideration of the
canonical density matrix, having the Slater sum as its diagonal element. For larger values
of g, some numerical results for the fermion density %(x) are presented, from essentially the
properties of Airy functions.

The influence of a non-zero value of the Compton wavelength � ¼ h=m0c, with m0 the
fermion rest mass, is then considered using relativistic Thomas–Fermi theory. For future
work, the treatment of Hiller from the Dirac equation should prove amenable to numerical
computation of the relativistic fermion density %�ðxÞ, for comparison with the Thomas–
Fermi results presented here. The possibility of relativistic and non-relativistic densities being
related by a difference equation with an interval determined by � is briefly referred to.

Keywords: Electron liquids; Canonical density matrix; Slater sum; Relativistic density

PACS: 05.30.Fk; 71.10.Ca; 31.15.Ew; 31.15.Bs

1. Introduction

Current interest in density functional theory spans both non-relativistic and relativistic
quantum mechanics. Especially important in the latter area would be the possibility of
working with a scalar fermion particle density, rather than with a Dirac spinor in wave
function theory. This was emphasized, for example, in the study by Holas and March
[1], other references being cited there.

We tackle here a model problem of one-dimensional motion in a linear scalar
potential V(x), namely

VðxÞ ¼ gjxj ð1Þ
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Our main concern will be to construct the fermion particle density, denoted by %(x), and
given in non-relativistic quantum mechanics by

%ðxÞ ¼
X

occupied i

 iðxÞ 
�
i ðxÞ ð2Þ

For the potential (1), the Schrödinger eigenfunctions  iðxÞ (in equation (2)) involve
Airy functions, the corresponding eigenvalues �i requiring knowledge of the nodes of
these functions (see section 3).

The interest we pursue here is, for the admittedly simple potential (1) which has,
however, interest for hadron physics and quark confinement, in addition to electron
liquids, to emphasize the question raised earlier [2], as to the relation, say, of %(x) in
equation (2) to the relativistic density, denoted throughout by %�ðxÞ, for the same
V(x), where � is the Compton wavelength � ¼ h=m0c. For the potential (1), this is
achieved largely by numerical procedures, though some limited analytical results are
presented for the non-relativistic limit c ! 1 corresponding to the limit �! 0.

The outline of the present article is as follows. In section 2, we report some
analytical results pertaining to the canonical density matrix Cðx, x0,�Þ, defined by

Cðx, x0,�Þ ¼
X
all i

expð���iÞ iðxÞ 
�
i ðx0Þ, � ¼ ðkBTÞ

�1
ð3Þ

where kB is Boltzmann’s constant. We note that Cðx, x0,�Þ is related to the Feynman
propagator Kðx, x0, tÞ through the transformation �! it. This matrix satisfies the
Bloch equation

Hx Cðx, x0,�Þ ¼ �
@Cðx, x0,�Þ

@�
ð4Þ

where Hx is the one-body Hamiltonian

Hx ¼ �
1

2

@2

@x2
þ VðxÞ ð5Þ

The completeness condition of the eigenfunctions  iðxÞ gives the ‘initial’ condition
under which equation (4) is to be solved as

Cðx, x0,� ¼ 0Þ ¼ �ðx� x0Þ ð6Þ

In particular, in section 2, some results for the effective potential matrix Uðx, x0,�Þ
defined by

Cðx, x0,�Þ ¼ C0 exp ��Uðx, x0,�Þð Þ ð7Þ

where C0 is the free fermion limit, will be presented, for small values of g in equation (1),
the result for U being given correctly up to and including Oðg2Þ. Then in section 3,
numerical results will be presented for %(x) in equation (2) using Airy functions,
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for a variety of occupied energy levels, or equivalently numbers N of fermions. Using
eigenfunctions and eigenvalues thereby obtained, some numerical results are also
given for the so-called Slater sum Sðx,�Þ which is simply the diagonal element
Cðx, x,�Þ of equation (3).

In section 4, we turn to the relativistic density %�ðxÞ, as given by relativistic Thomas–
Fermi theory [3]. Section 5 then makes a start on the problem referred to above of
relating %(x) and %�ðxÞ for this model potential (1). Finally, section 6 constitutes a
summary plus some proposals for further study which may prove fruitful.

2. Canonical density matrix for potential VðxÞVgjxj for g small

To get analytical results for the canonical density matrix, we have used the perturbation
theory of March and Stoddart [4] for the effective potential matrix Uðx, x0,�Þ defined in
equation (7). This satisfies, to first order in V(x), the equation

U1ðx, x0,�Þ ¼

Z 1

�1

dx1

Z 1

0

daC0ðx1 � x0, aðx� x0Þ, að1� aÞ�ÞVðx1Þ ð8Þ

Here, the explicit form of the free fermion matrix C0ðx, x0,�Þ was already known to
Sondheimer and Wilson [5], and is given by

C0ðx, x0,�Þ ¼
1ffiffiffiffiffiffiffiffi
2��

p exp �
ðx� x0Þ

2

2�

� �
ð9Þ

By gradient expansion of V(x1), the result of March and Stoddart [4, therein
equation (A 2.2)], for the linear potential (1) reduces to the form

U1ðx, x0,�Þ ¼

Z 1

0

daVðaxþ ð1� aÞx0Þ ð10Þ

which clearly yields, on the diagonal x0 ¼ x, the intuitively simple result

U1ðx, x,�Þ ¼ VðxÞ ð11Þ

However, for x0 not equal to x, the potential VðxÞ ¼ gjxj needs careful consideration,
requiring treatment of different regimes of x and x0. The final result in compact form
is given by

U1ðx, x0,�Þ ¼
g

2ðx� x0Þ

�
xjxj � x0jx0j

�
ð12Þ

As March and Stoddart also note, though they do not consider potential (1), in their
equation (A 2.6), there is a term to be added at Oðg2Þ: denoted byU2 below and given by

U2ðx, x0,�Þ ¼
�2

6

Z 1

0

da
@

@x
Vðaxþ ð1� aÞx0Þ

� �2

ð13Þ

In the case of an odd potential V ¼ gx, this result is readily evaluated to yield
U2 ¼ ð�2g3Þ=24, and with U1 as in equation (11) one has the exact Slater sum of this odd
potential. However (see also figure 6 later in this article), for the even potential V¼gjxj,

Inhomogeneous electron liquid 227

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
4
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



U2 has a singular form as x0!x, U2ðx,x0,�Þ¼ð�2g2Þ=ð12ðx�x0Þ
4
Þðjxjðx�x0Þþ

x0ðjxj�jx0jÞÞ, showing, in contrast to figure 6, that truncating gradient expansions
fail in this case.

Having constructed these analytical results for the Cðx, x0,�Þ matrix for small g, we
turn immediately to obtain the corresponding fermion densities %(x) from equation (2),
for fermion numbers N, but now for large g.

3. Particle density and kinetic energy density as function of number N
of fermion levels occupied

The Airy functions are denoted by AiðxÞ: our aim in this section is to display first
the fermion particle density %NðxÞ defined by (see also Hiller [6], who however, was
concerned with wave functions and eigenvalues, not %(x))

%NðxÞ ¼
XN
i¼1

h
Ni Aiðjxj � 2�iÞ

i2
ð14Þ

where the �i denote the zeros of AiðxÞ and Ai0ðxÞ:

Ai0ð�2�nÞ ¼ 0 �! �1, �3, �5, . . . ð15Þ

and

Aið�2�mÞ ¼ 0 �! �2, �4, �6, . . . ð16Þ

The results for the nodes in equations (15) and (16) are displayed in table 1, together
with the lowest 20 adimensional eigenvalues �i. (The eigenenergies depend on the
physical parameters and are indeed given by Ei ¼ ðð�hh2g2Þ=2mÞ

1=3�i.)

Table 1. Low-lying eigenvalues �i for linear scalar potential VðxÞ ¼ gjxj:

Zeros of AiðxÞ Zeros of Ai0ðxÞ �i

1 �1.01879 1.01879
2 �2.33811 2.33811
3 �3.24820 3.24820
4 �4.08795 4.08795
5 �4.82010 4.82010
6 �5.52056 5.52056
7 �6.16331 6.16331
8 �6.78671 6.78671
9 �7.37218 7.37218
10 �7.94413 7.94413
11 �8.48849 8.48849
12 �9.02265 9.02265
13 �9.53545 9.53545
14 �10.04017 10.04017
15 �10.52766 10.52766
16 �11.00852 11.00852
17 �11.47506 11.47506
18 �11.93602 11.93602
19 �12.38479 12.38479
20 �12.82878 12.82878
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In equation (14), Ni denotes the normalization factor ensuring that there is a single
fermion in each occupied level, and hence that

Z 1

�1

%NðxÞ dx ¼ N ð17Þ

The particle densities %NðxÞ thereby obtained are displayed in figure 1 for N from 5 to
20, even values being shown on the left of this figure. What is clear is that the features
shown as N are varied, remain at constant values of %, the lowest feature being at or
near %¼ 0.5, independent of N. Naturally, a new feature appears as each additional
level is filled, the spacing in % reducing with increasing N. It is clear from figure 1
that %Nð0Þ is not (quite!) the maximum of each curve, due to the ‘oscillations’ in evi-
dence for each value of N shown. Since %Nð0Þ is a characteristic feature of the fermion
density, values of %Nð0Þ=N

1=3, an approximately constant quantity �0:424, are given in
table 2. That odd and even values of N approach a limiting large N value in a different
manner is demonstrated in figure 2.

3.1. Relation of kinetic energy density to particle density

The positive definite kinetic energy per unit length, referred to for convenience as
kinetic energy density, will be defined by

tgðxÞ ¼
1

2

X
occupied i

f 0
iðxÞg

2 ð18Þ

-15 -10 -5 5 10 15

0.2

0.4

0.6

�N

x

(a)

(b)

-15 -10 -5 5 10 15

0.2

0.4

0.6

�N

x

Figure 1. Non-relativistic Fermion particle density %N : (a) for N ¼ 6, 8, . . . , 20, (b) for N ¼ 5, 7, . . . , 19.
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Using the Airy functions set out earlier for  iðxÞ, t
N
g ðxÞ is plotted in figure 3, again

for N from 5 to 20 inclusive. In the region of tunnelling tails of the wave functions,
we show in figure 4(b) the von Weizsäcker [7] inhomogeneity kinetic energy density
tW(x) defined by

tW ðxÞ ¼
1

8

½%0ðxÞ�2

%ðxÞ
ð19Þ

Table 2. Fermion particle density %N ðxÞ at the origin, from N ¼ 6
to 20. Approximate scaling with N1=3 is evident.

N N1=3 %N ð0Þ=N
1=3

6 1.81712 0.41188
7 1.91293 0.43366
8 2.00000 0.41478
9 2.08008 0.43142
10 2.15443 0.41653
11 2.22398 0.42999
12 2.28943 0.41770
13 2.35133 0.42900
14 2.41014 0.41854
15 2.46621 0.42828
16 2.51984 0.41916
17 2.57128 0.42772
18 2.62074 0.41965
19 2.66840 0.42728
20 2.71442 0.42004

2 4 6 8 10 12 14

0.42

0.44

0.46

0.48

0.5
�N (0)
N1/3

N

Figure 2. Different behavior of non-relativistic fermion density at the origin for even and odd N, related
to Table 2.
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for comparison. The kinetic energy density in the tunnelling tails is evidently dominated

by the von Weizsäcker form, which has relatively small amplitude elsewhere when

N¼ 20.
To complete this section, we provide a link with the canonical density matrix

Cðx, x0,�Þ discussed previously, and in particular its diagonal element Cðx, x,�Þ
which is the Slater sum Sðx,�Þ, as mentioned earlier. Here, using the wave functions

described earlier in terms of Airy functions, plus the corresponding eigenvalues

recorded in table 1 (they extend the results given by Hiller [6] up to N¼ 20), we have

constructed the ‘partial Slater sum’ SNðx,�Þ defined by

SNðx,�Þ ¼
XN
i¼1

expð���iÞ
h
Ni Aiðjxj � 2�iÞ

i2
, ð20Þ

again for N¼ 6–20. The results for SNðx,�Þ for �¼ 1 and �¼ 5 are displayed in figure 5.

For comparison, the result S1ðx,�Þ ¼ ð2��Þ�1=2 expð��U1ðx, x,�ÞÞ is also shown, with

U1 defined in equation (8). When the diagonal form (equation (11)) is inserted, S1ðx,�Þ
becomes, in fact, the Thomas–Fermi approximation to the Slater sum. This is also

shown for comparison with the finite sums in figure 5, for again �¼ 1 and �¼ 5.

Except for the non-analytic behavior of S1ðx,�Þ at x¼ 0, the agreement with the

finite sum in equation (20) for N¼ 20 is already quite reasonable for �¼ 1. However,

the Thomas–Fermi result is a small � approximation, and fails for �¼ 5 (see figure 5(b)).

(a)

-15 -10 -5 5 10 15

1

2

tNg

x

(b)

-15 -10 -5 5 10 15

1

2

tNg

x

Figure 3. Non-relativistic kinetic energy density tNg : (a) for N ¼ 6, 8, . . . , 20, (b) for N ¼ 5, 7, . . . , 19.
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(a)

-15 -10 -5 5 10 15

1

2.5tNg

x

(a)

-15 -10 -5 5 10 15

0.1

0.2

0.3

0.4SN (x, ψ)

x

(b)

-15 -10 -5 5 10 15

0.01

0.02

0.03

0.04

0.05

0.06tNg

x

tW

Figure 4. (a) Kinetic energy density tNg for N ¼ 10, 11, 12, . . . , 20, (b) Solid line tNg , dashed line tW defined
in equation (19), both for N¼ 20.

(b)

0.05

0.1

0.15

SN (x, ψ)

x

Figure 5. Partial Slater sum SN ðx, �Þ, (a) for �¼ 1, (b) for �¼ 5. The Thomas–Fermi approximation
is shown by the dashed lines. It is a small � result, and fails therefore for �¼ 5.
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To conclude this section, we have utilized the results for SNðx,�Þ for �¼ 1 and N¼ 20
to construct figure 6, which shows Uðx,�Þ thereby extracted from equation (7) with x0
put equal to x. Deviations from the potential VðxÞ ¼ gjxj occur only very close to x¼ 0

and validate the equation (11) elsewhere.

4. Relativistic generalization of Thomas–Fermi particle density

The purpose of this section is to effect the relativistic generalization of the fermion par-
ticle density exhibited in figure 1 at the level of the Thomas–Fermi approximation.

For the relativistic Thomas–Fermi theory [8], the fermion particle density is given by

%�ðxÞ ¼
1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� þm0 � gjxjÞ2 �m2

0

q
ð21Þ

for x 2 ½�xc, xc�, where xc is a cut-off radius, which in our case takes the value
xc ¼ ��=g, �� being the relativistic chemical potential, whose value is obtained from
the condition

N ¼

Z xc

�xc

%�ðxÞ dx ð22Þ

From equations (21) and (22) we obtain an implicit expression for �� as a function of

N, g and m0:

ð1þ aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að2þ aÞ

p
� 2 arcsinh

ffiffiffi
a

2

r
¼

g�N

m2
0

, a ¼
��
m0

ð23Þ

This quantity a ¼ ��=m0 is plotted versus g�N=m2
0 in figure 7.

Inserting ��ðNÞ into equation (21) enables the relativistic Thomas–Fermi density to
be calculated. The results are shown in figure 8, where, because the relativistic Thomas–
Fermi theory has statistical foundations, it comes into its own at really large values

of N. Therefore, in figure 8, we have included plots for N up to 100.

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

1.2

1.4 U20(x, 1)

x

Figure 6. Effective potential matrix U20ðx,� ¼ 1Þ from S20ðx,� ¼ 1Þ, g ¼ 1=2 (see equation (20)).
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5. Can .kðxQdÞ be directly related to .(x) for an appropriate choice of ‘difference’ d,

assumed related to the Compton wavelength h=m0c?

The purpose of this article is to question, given that both relativistic and non-relativistic
fermion densities %�ðxÞ and %(x) are characterized by the same linear potential
VðxÞ ¼ gjxj, whether %�ðxÞ can be related to %(x) in practice. This question was
answered in the affirmative by one of us [2], in an earlier work in which both %�ðxÞ
and %(x) were approximated by the Thomas–Fermi theory, valid for large numbers
of fermions. Howard and March [9] also proposed an affirmative answer to this ques-
tion recently, transcending the Thomas–Fermi limit, but now specifically for harmonic

10

20

30

40

50

500 1000 1500 2000 2500

µλ

gπN

Figure 7. Chemical potential �� as a function of N, with m0¼ 1.

-20 -10 10 20

2

4�N
λ (x)

x

Figure 8. %N� ðxÞ for relativistic Thomas–Fermi theory (see equations (21) and (23)), for
N ¼ 20, 40, 60, 80, 100. Notice the classically forbidden radii in this theory.
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confinement in d dimensions. These authors wrote, in the example d¼ 1:

%�ðxþ �Þ ¼ bðx, �Þ %ðxÞ ð24Þ

where the interval � was asserted, as above, to be determined by the Compton

wavelength. Their heuristic arguments suggested, however, that � would also depend

on the number N of occupied fermion levels. We return briefly to these issues

in section 6.

6. Summary and proposed future directions

The main achievements of this study are as follows:

(i) Approximate forms of the Feynman propagator Kðx, x0, tÞ or equivalently the
canonical density matrix Cðx, x0,�Þ for the non-relativistic theory of the linear

potential VðxÞ ¼ gjxj, in section 2.
(ii) Quantum mechanical fermion particle densities %(x) and kinetic energy densities

for non-relativistic fermions, shown in figures 1 and 2, respectively, for numbers

of occupied fermion levels N ranging from 5 to 20.
(iii) Determination of the chemical potential and the fermion density %�ðxÞ using

relativistic Thomas–Fermi theory in figures 7 and 8, respectively.
(iv) Brief discussion of the possible relation between a ‘shifted’ relativistic density

%�ðxþ �Þ and its non-relativistic limit %(x), the interval � involving the Compton

wavelength.

As for future directions, it would of course be important if a third-order linear homo-

geneous differential equation could be established for %(x), for an arbitrary number N

of filled levels, as was done by Lawes and March [10] for harmonic confinement (see

also the Appendix). If this further step eventually proves possible, it would then be

of interest to extend the heuristic proposal of Howard and March [9] made for harmo-

nic confinement: namely to replace the non-relativistic differential equation by its cen-

tral difference counterpart, with interval � (see equation (24)) involving the Compton

wavelength. It would, of course, be of considerable interest for future relativistic density

functional theory to compare the Dirac density %�ðxÞ calculated from the work of

Hiller [6] with the solution of the resulting difference equation, for various choices of

the number of occupied fermion levels. By construction, this procedure would reduce

correctly to the non-relativistic density %(x) as the difference � was allowed to tend

to zero.
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Appendix: Toward a differential equation for the non-relativistic ground

state density .(x) in a linear potential VV gjxj

In an earlier work, Lawes and March [10] gave a differential equation for the fermion
particle density for one-dimensional harmonic confinement with VðxÞ ¼ 1=2x2 as

1

8
%000ðxÞ þ

1

2
%ðxÞV 0ðxÞ þ N � VðxÞ½ �%0ðxÞ ¼ 0 ðA1Þ

N¼ 1 corresponding to the lowest state.
The aim of this Appendix is to set out some limiting properties, which a

corresponding differential equation for the linear potential V ¼ gjxj, though not
presently available for general N, must embody.

First, we write the Thomas–Fermi non-relativistic density %TFðxÞ in terms of the
chemical potential � as

%TFðxÞ ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� VðxÞ

p
ðA2Þ

and find the derivative as

%TF
0
ðxÞ ¼ �

K

2

V 0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� VðxÞ

p ðA3Þ

Multiplying both sides of equation (A3) by ½�� VðxÞ� and again using equation (A2),
we readily obtain

½�� VðxÞ�%TF
0
ðxÞ ¼ �

1

2
%TFðxÞ V 0ðxÞ ðA4Þ

This result (equation (A4)) is valid for the limit of large N for a general one-dimensional
potential V(x), provided �(N) is calculated from equation (A2) to yieldR
%TFðxÞ dx ¼ N.
It is already interesting to compare the general result for large N given in

equation (A4) with the specific, but exact, result in equation (A1) for harmonic
confinement. If one neglects the highest (third) derivative in equation (A1), and then
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calculates � from equation (A2) from the normalization condition on %TFðxÞ stated
above, one finds � ¼ N and equations (A4) and (A1) are in accord for large N.

For the lowest state only of the linear potential V ¼ gjxj, with eigenvalue �1, shown
in table 1 of the main text, one can, by the use of the properties of the Airy function, or
otherwise, readily verify that the particle density %1ðxÞ ¼  1ðxÞ 

�
1ðxÞ satisfies the linear

third-order differential equation

1

8
%000ðxÞ þ �1 � gjxj½ �%0ðxÞ �

1

2
%ðxÞV 0ðxÞ ¼ 0 ðA5Þ

However, comparison of equation (A5) with the limiting large N form in equation (A4)
above shows that the equation (A5) cannot be true for large N and, while it gives one
exact limit for N¼ 1 of the sought-after differential equation for V ¼ gjxj, it must be
crucially modified away from N¼ 1.
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